ISI BANGALORE

NOVEMBER 2017

DIFFERENTIAL TOPOLOGY

Notes.

(a) Justify all your steps. You may use any result proved in class unless you have been asked to prove the same.

(b) \mathbb{R} = real numbers, S^k = the unit sphere in \mathbb{R}^{k+1} .

1. [12 points] Show that the antipodal map $x \to -x$ of $S^{2m+1} \to S^{2m+1}$ is homotopic to the identity map.

2. [12 points] Prove or disprove: There exists a smooth map $f \colon \mathbb{R} \to \mathbb{R}$ whose critical values form a dense subset of \mathbb{R} .

3. [12 points] Let $U \subset \mathbb{R}^k$ be an open subset and $f: U \to \mathbb{R}$ a smooth function. Prove that for almost all k-tuples $\vec{a} = (a_1, \ldots, a_k) \in \mathbb{R}^k$, the function $f_{\vec{a}} := f + a_1 x_1 + \cdots + a_k x_k$ is a Morse function on U.

4. [25 points] For a k-manifold X in \mathbb{R}^M define its tangent bundle $T(X) \to X$ and the normal bundle $N(X) \to X$. Let B denote the open punctured unit ball in \mathbb{R}^3 , i.e., $B = \{y \in \mathbb{R}^3 \mid 0 < \|y\| < 1\}$. Prove or disprove the following.

(i) There exist X, k, M such that T(X) is diffeomorphic to B.

(ii) There exist X, k, M such that N(X) is diffeomorphic to B.

5. [12 points] Suppose that X is a boundaryless manifold and that $\pi: X \to \mathbb{R}$ is a smooth function with regular value 0. Then prove that the subset $\{x \in X \mid \pi(x) \ge 0\}$ is a manifold with boundary, the boundary being $\pi^{-1}0$.

6. [15 points] State and prove the Brouwer Fixed-Point Theorem. (You may assume the theorem that if X is a compact manifold with boundary, then there is no retraction of X onto its boundary).

7. [12 points] Let Y be a submanifold of \mathbb{R}^M and let $w \in \mathbb{R}^M$. Suppose there is a point $y_0 \in Y$ such that $d(y, w) \ge d(y_0, w)$ for all $y \in Y$. Prove that $w - y_0$ is in the normal space of Y at y_0 .

100 Points